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A NOTE ON AN INVERSE EIGENPROBLEM
FOR BAND MATRICESt

Gregory S. Ammar William B. Gragg*
Department of Mathematical Sciences Department of Mathematics

Northern Illinois University Naval Postgraduate School
DeKalb, IL 60115 Monterey, CA 03943

Abstract'" ,

We present an efficient rotation pattern/that can be used in the construction of a
band matrix from spectral data. The procedure allows for the stable 0(n 2 )
construction of a real symmetric band matrix having specified eigenvalues and
first p components of its normalized eigenvectors. The procedure can also be used
in the second phase of the construction of a band matrix from the interlacing
eigenvalues, as described in [].) Previously presented algorithms for these
reductions using elementary orthogonal similarity transformations require 0(i 3)
arithmetic operations.

Key-Words: Band matrix, inverse eigenvalue problem, Givens rotations,
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1. Introduction.

Let A be a real symmetric (2p +1)-band matrix of order n, and let Ak denote
the trailing principal submatrix of A = A n of order k. It is well known that the
eigenvalues of Ak interlace those of Ak+ 1 for each k < n, and moreover, given

real numbers (k) (1 <_j _k, n-p k <n) satisfying
\kl < '\(k) < X(k+l)

-- - - "- +1 ,(1

there is a (2p +1)-band matrix A =A n such that the eigenvalues of Ak are

j - 1 for each k. In general, this band matrix is not uniquely determined.

The problem of constructing a band matrix from the interlacing eigenvalues
(1) is considered in [21 and 11]. A survey of this problem and some related inverse
eigenvalue problems is given in [3]. In 12] the interlacing eigenvalues are used to
determine the first p components of normalized eigenvectors for A, and the
remaining components of the eigenvectors (and hence A) are constructed using a
block Lanczos process. In [1] a matrix of bordered structure (where the trailing
principal submatrix of order p is diagonal) is constructed that satisfies the
required spectral conditions. Householder transformations that preserve the
eigenvalues of the trailing submatrices are then applied to reduce this bordered
matrix to band form. This reduction procedure uses O(n 3) arithmetic operations.

In this note we present an efficient rotation pattern that provides a stable
O(n 2 ) procedure which can be used in the second step (the reduction step) of

either of the above methods. This algorithm provides a solution to the open
problem posed in [3, p.615], and can be considered as the generalization to band
matrices of Rutishauser's procedure for the construction of Jacobi matrices from

spectral data presented in [4].

2. The Algorithm

The reduction step in [2] can be described as follows. Given {X,.}7j.. and an

nXp matrix Q, with orthogonal columns, construct a (2p+1-band matrix
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having eigenvalues X,. and such that QrT forms the first p rows of the

(orthogonal) eigenvector matrix for A. This reduction can be performed using a

sequence of orthogonal similarity transformations whose composition results in an

orthogonal transformation Q such that

[QT] [QA Q [i [P A] 2

is a (2p +1)-band matrix of order n +p. The trailing principal submatrix A =AT
then satisfies the required spectral conditions. (The matrix X is arbitrary and

remains unchanged).

In the algorithm given in [1], a matrix of the bordered form

B B D] (3)

where D is a diagonal matrix of order n - p, is constructed such that the trailing

principal submatrices of orders n-p through n of B have prescribed eigenvalues.

Householder transformations that do not involve the first p coordinate axes are

then used to transform B to a (2p+l)-band matrix A while preserving the

eigenvalues of the trailing principal submatrices. In particular, the composition of

these Householder transformations yields an orthogonal matrix U of order n -p

such that

ol1 BO B?' ITI o
PUT] I B D ][ UJ

is a (2p +l)-band matrix of order n. Thus, the reduction of the matrices in (2)

and (4) is essentially the same problem. We now describe our efficient rotation

pattern in terms of the reduction of a matrix in the bordered form (3).

The efficient reduction to band form is obtained by performing rotations to

introduce appropriate zeros in B row-by-row beginning at row p +2, in such a

way that the intermediate matrices remain sparse. In contrast, a Householder

transformation to introduce zeros in the first column of the matrix will result in a
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full matrix, and the subsequent Householder transformations must be performed
on full matrices.

Let R(A ,j,k,l) = G A GT, where G is the elementary Givens rotation in the
(.j,k)-plane that annihilates aki. Thus. G is the identity matrix if ak ='0. If
ak *0 then G is the identity matrix apart from the 2X2 submatrix formed from

rows and columns j and k, which is given by

G [j, ]=[r8]

where c := aj/'\/ aj + ak and s := ak, /\/aj + ak . Our algorithm for reducing

the bordered matrix to band form is then given as follows.

Algorithm.

for k =p+2, . n
for j = p+1,., k-1

A :=R(A,j,k,j-p)

To see how the sparsity is preserved, consider the example in Figure 1. There

n = 8, p = 2, and the necessary zeros have already been introduced in rows 4
through 7. Nonzero entries are represented by X, a Givens rotation is performed

in the indicated planes to annihilate the circled entry, and the symbol + indicates

the "fill in" (i.e., the additional nonzero entries) introduced by the rotation. The

first rotation, in the (3,8) plane, annihilates as,, and creates p +1 = 3 additional

nonzero entries. (We count aij and aji as one element.) The successive rotations

introduce at most one additional nonzero element each, so there are at most

2p+1 = 5 nonzero entries on the 8th row at any time. We can therefore perform
each elementary similarity transformations on A in 0(p) arithmetic work. Thus

the amount of computation required by the reduction is 0(pn2).

Our algorithm for the reduction of a bordered matrix to band form is

explicitly given below. This description involves only the lower-triangular part of

the symmetric matrix A.



FIGURE 1.

Rotations are performed in coordinate planes (3,8), (4,8), (5,8), (6,8) and (7,8) to
introduce the appropriate zeros in the eighth row.
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Algorithm.

Input: a symmetric matrix A =[aj,k1-k_ 1 whose trailing principal submatrix

of order n - p is diagonal.

Output: a symmetric (2 p + 1)-band matrix A whose trailing principal

submatrices of orders n - p through n are orthogonally similar with those of

the input matrix.

for k=p+2,.. .,n

for j=p +1, . . . ,k-1

if ak j- p * then
:= aj2jp

C := ajjpl/p; s := akj- p / p ;

aj,jp :--=p; ak,j p :=-0;

for i =p-,p-2, . . . , I

ak,j-i -s c I [ ak ,j-i

for i=j+1,j+2 , min{j+p,k-1}

I -- : ]L° ,,j
ak ,i I

u :- aj,j; v := ak,kW ak, j

aj,j :=c 2 u +s 2 v +2csw; ak, k :=-C 
2 v s 2 u -2csw;

ak, :=CS(V -U)+(c2 - 2)W.

3. Numerical results.

Numerical experiments verify that our efficient rotation pattern produces

accurate results in lower order work than the Householder reduction technique.

These experiments were performed on the VAX 11/750 at Northern Illinois

University.
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1

The following experiment was performed. The method of [1] was used to

create a bordered matrix whose trailing principal matrices of order n-p through

n have specified eigenvalues. This matrix was then reduced to (2p +1)-band

form using

I. the Householder reduction procedure of [1];

II. our efficient rotation pattern.

We calculated the average and maximum absolute error among the assigned

eigenvalues of the trailing principal submatrices of orders n -p throuigh n. The

results displayed in Table 1 were obtained by assigning the eigenvalues of Ak.

n -p <k< n, to be the integers 2j +(n -k-1), 1 <j <k. Experiments were

carried out on a variety of other problems with similar results.

Table 1. Errors in eigenvalues.

average error maximum error

n p I II I II

10 2 0.1236e-05 0.5762e-06 0.9537e-05 0.1907e-05

20 2 0.369ge-05 0.2226e-05 0.2289e-04 0.9537e-05

50 2 0.9784e-05 0.1210e-04 0.5341e-04 0.4578e-04

10 4 0.1283e-05 0.5470e-06 0.5722e-05 0.1907e-05

20 4 0.2068e-05 0.2948e-05 0.1335e-04 0.1144e-04

50 4 O. 1 106e-04 0.1 199e-04 0.4578e-04 0.6866e-04

10 6 0.7600e-06 0.4705e-06 0.2861e-05 0.1907e-05

20 6 0.2815e-05 0.3268e-05 0.762ge-05 0.1144e-04

50 6 0.1189e-04 0.2058e-04 0.6866e-04 0.6104e-04



-7 -

Tables 2a and 2b show average average CPU times used by each reduction

scheme for various values of n and p. Table 2c shows the corresponding ratios of

the time used by the Householder reduction to that of our rotation pattern.

These ratios represent the speedup factors of Algorithm II relative to Algorithm I.

Note that for fixed n, the amount of computation required by Algorithm I

decreases as p increases, while that of Algorithm II is often increasing as a

function of p when p is small. These results show that our rotation pattern is

consistently more efficient than the Householder reduction technique. The relative

efficiency of the rotation pattern generally increases as n increases and decreases

as p increases.

Table 2a. Average timings for Algorithm I (CPU seconds).
n 10 20 30 40 50 100 200

1 0.029 0.182 0.550 1.231 2.342 17.858 140.070
2 0.023 0.163 0.534 1.199 2.286 17.632 139.693
5 0.013 0.131 0.456 1.081 2.119 17.127 137.837

10 0.072 0.327 0.868 1.796 15.852 133.120
20 0.117 0.476 1.178 13.503 123.227

Table 2b. Average timings for Algorithm II (CPU seconds).
n 10 20 30 40 50 100 200

1 0.022 0.087 0.207 0.381 0.596 2.493 10.273
2 0.018 0.099 0.244 0.453 0.734 3.112 13.037
5 0.009 0.103 0.302 0.618 1.044 4.807 20.757

10 0.063 0.287 0.692 1.275 6.937 32.130
20 0.104 0.451 1.110 9.250 50.007
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Table 2c. Ratios of CPU times.
n 10 20 30 40 50 100 200

1 1.346 2.096 2.661 3.232 3.931 7.162 13.634
2 1.333 1.639 2.188 2.645 3.114 5.666 10.715
5 1.364 1.266 1.511 1.748 2.030 3.563 6.641

10 1.147 1.136 1.253 1.408 2.285 4.143
20 1.128 1.055 1.062 1.460 2.464
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